Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.05.22.541685

ABSTRACT

Vaccines against SARS-CoV-2 have been proven to be an effective means of decreasing COVID-19 mortality, hospitalization rates, and transmission. One of the vaccines deployed worldwide is ChAdOx1 nCoV-19, which uses an adenovirus vector to drive the expression of the original SARS-CoV-2 spike on the surface of transduced cells. Using cryo-electron tomography and subtomogram averaging, we determined the native structures of the vaccine product expressed on cell surfaces in situ. We show that ChAdOx1-vectored vaccines expressing the Beta SARS-CoV-2 variant produce abundant native prefusion spikes predominantly in one-RBD-up conformation. Furthermore, the ChAdOx1 vectored HexaPro stabilized spike yields higher cell surface expression, enhanced RBD exposure, and reduced shedding of S1 compared to the wild-type. We demonstrate in situ structure determination as a powerful means for studying antigen design options in future vaccine development against emerging novel SARS-CoV-2 variants and broadly against other infectious viruses.


Subject(s)
COVID-19
2.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-134794.v1

ABSTRACT

Since the outbreak of the SARS-CoV-2 pandemic, there have been intense structural studies on purified recombinant viral components and inactivated viruses. However, structural and ultrastructural evidence on how the SARS-CoV-2 infection progresses in the frozen-hydrated native cellular context is scarce, and there is a lack of comprehensive knowledge on the SARS-CoV-2 replicative cycle. To correlate the cytopathic events induced by SARS-CoV-2 with virus replication process under the frozen-hydrated condition, here we established a unique multi-modal, multi-scale cryo-correlative platform to image SARS-CoV-2 infection in Vero cells. This platform combines serial cryoFIB/SEM volume imaging and soft X-ray cryo-tomography with cell lamellae-based cryo-electron tomography (cryoET) and subtomogram averaging. The results place critical SARS-CoV-2 structural events – e.g. viral RNA transport portals on double membrane vesicles, virus assembly and budding intermediates, virus egress pathways, and native virus spike structures from intracellular assembled and extracellular released virus - in the context of whole-cell images. The latter revealed numerous heterogeneous cytoplasmic vesicles, the formation of membrane tunnels through which viruses exit, and the drastic cytoplasm invasion into the nucleus. This integrated approach allows a holistic view of SARS-CoV-2 infection, from the whole cell to individual molecules.


Subject(s)
COVID-19
3.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3733984

ABSTRACT

Understanding the genome replication, assembly and egress of SARS-CoV-2, a multistage process that involves different cellular compartments and the activity of many viral and cellular proteins, is critically important as it bears the means of medical intervention to stop infection. However, there is a lack of comprehensive knowledge on SARS-CoV-2 replicative cycle. Here, we investigated SARS-CoV-2 replication in the native cellular context using a unique correlative multi-modal, multi-scale cryo-imaging approach combining soft X-ray cryo-tomography and serial cryoFIB/SEM volume imaging with cryo-electron tomography (cryoET) and subtomogram averaging. Our results reveal not only profound cytopathic effects of SARS-CoV-2 infection at the whole cell level, exemplified by the formation of membrane tunnels through which viruses exit and drastic cytoplasm invasion into nucleus, but also novel processes of SASR-CoV-2 assembly, budding and egress. The integration of multi-scale cryo-imaging data has led us to propose a model for SARS-CoV-2 replication pathway.Funding Statement: This research was supported by the National Institutes of Health grant P50AI150481, the UK Wellcome Trust Investigator Award 206422/Z/17/Z, the UK Biotechnology and Biological Sciences Research Council grant BB/S003339/1, and the grant from the Chinese Academy of Medical Sciences Oxford Institute. Containment level 3 experiments were funded through the generous support of philanthropic donors to the University of Oxford’s COVID-19 Research Response Fund. M.L.K. is supported by the Biotechnology and Biological Sciences Research Council (BBSRC) (grant number BB/M011224/1).Declaration of Interests: The authors declare no competing interests.


Subject(s)
COVID-19 , Neoplasm Invasiveness
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.05.370239

ABSTRACT

Since the outbreak of the SARS-CoV-2 pandemic, there have been intense structural studies on purified recombinant viral components and inactivated viruses. However, investigation of the SARS-CoV-2 infection in the native cellular context is scarce, and there is a lack of comprehensive knowledge on SARS-CoV-2 replicative cycle. Understanding the genome replication, assembly and egress of SARS-CoV-2, a multistage process that involves different cellular compartments and the activity of many viral and cellular proteins, is critically important as it bears the means of medical intervention to stop infection. Here, we investigated SARS-CoV-2 replication in Vero cells under the near-native frozen-hydrated condition using a unique correlative multi-modal, multi-scale cryo-imaging approach combining soft X-ray cryo-tomography and serial cryoFIB/SEM volume imaging of the entire SARS-CoV-2 infected cell with cryo-electron tomography (cryoET) of cellular lamellae and cell periphery, as well as structure determination of viral components by subtomogram averaging. Our results reveal at the whole cell level profound cytopathic effects of SARS-CoV-2 infection, exemplified by a large amount of heterogeneous vesicles in the cytoplasm for RNA synthesis and virus assembly, formation of membrane tunnels through which viruses exit, and drastic cytoplasm invasion into nucleus. Furthermore, cryoET of cell lamellae reveals how viral RNAs are transported from double-membrane vesicles where they are synthesized to viral assembly sites; how viral spikes and RNPs assist in virus assembly and budding; and how fully assembled virus particles exit the cell, thus stablishing a model of SARS-CoV-2 genome replication, virus assembly and egress pathways.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.05.368647

ABSTRACT

Macrophages regulate protective immune responses to infectious microbes, but aberrant macrophage activation frequently drives pathological inflammation. To identify regulators of vigorous macrophage activation, we analyzed RNA-seq data from synovial macrophages and identified SLAMF7 as a receptor associated with a super-activated macrophage state in rheumatoid arthritis. We implicated IFN-gamma as a key regulator of SLAMF7 expression. Engaging this receptor drove an exuberant wave of inflammatory cytokine expression, and induction of TNF-alpha following SLAMF7 engagement amplified inflammation through an autocrine signaling loop. We observed SLAMF7-induced gene programs not only in macrophages from rheumatoid arthritis patients, but in gut macrophages from active Crohn's disease patients and lung macrophages from severe COVID-19 patients. This suggests a central role for SLAMF7 in macrophage super-activation with broad implications in pathology.


Subject(s)
Arthritis, Rheumatoid , COVID-19 , Inflammation , Crohn Disease
6.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3659985

ABSTRACT

The outbreak of SARS-CoV-2 in December 2019, led to the ongoing global pandemic of coronavirus disease 2019 (COVID‑19), which has claimed more than a half million lives in a few months. Enormous efforts are being made in developing vaccines and therapeutic treatment to fight against COVID-19. Inactivated SARS-CoV-2 viruses are currently used as vaccine candidates; therefore, it is important to understand the architecture of SARS-CoV-2. We have propagated and purified a clinical strain of SARS-CoV-2 and genetically and structurally characterized β-propiolactone inactivated viruses. We observed that the virus particles are roughly spherical or moderately pleiomorphic. Although a small fraction of prefusion spikes are observed, the majority of viral spikes appear nail-shaped resembling a postfusion state, where S1 protein of the spike has disassociated. Cryo-electron tomography and subtomogram averaging of these spikes yielded a density map which closely matches the overall structure of SARS-CoV S2 spike and their corresponding glycosylation sites. Our findings have major implications in SARS-CoV-2 vaccine design owing to the critical importance of prefusion immunogens.Funding: This work was supported by the Science and Technology Innovation Committee of Shenzhen Municipality(202002073000002), the National Institutes of Health grant P50AI150481 (P.Z.), the UK Wellcome Trust Investigator Award 206422/Z/17/Z(P.Z.), and the UK Biotechnology and Biological Sciences Research Council grant BB/S003339/1 (P.Z.). Conflict of Interest: The authors declare no competing financial or non-financial interests. Ethical Approval: The research received approval from the Research Ethics Committee of Shenzhen Third People's Hospital, China (approval number: 2020-038). The Research Ethics Committee waived the requirement informed consent before the study started because of the urgent need to collect epidemiological and clinical data. We analyzed the data anonymously.


Subject(s)
Coronavirus Infections , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL